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ABSTRACT

The Bacterial Flagellar Motor is a rotary molecular machine that rotates the helical filaments which 

propel swimming bacteria. Extensive experimental and theoretical studies exist on the structure, 

assembly, energy input, power generation and switching mechanism of the motor. In our previous 

paper (Proc. Natl. Acad. Sci, 103:1260 (2006)), we explained the general physics underneath the 

observed torque-speed curves with a simple two-state Fokker-Planck model. Here we further analyze 

this model. In this paper we show 1) the model predicts that the two components of the ion motive 

force can affect the motor dynamics differently, in agreement with the latest experiment by Lo et 

al.(Biophys. J., 93:294 (2007); 2) with explicit consideration of the stator spring, the model also 

explains the lack of dependence of the zero-load speed on stator number in the proton motor, recently 

observed by Yuan and Berg (Proc. Natl. Acad. Sci, 105:1182 (2008)); 3) the model reproduces the 

stepping behavior of the motor even with the existence of the stator springs and predicts the dwelling 

time distribution. Predicted stepping behavior of motors with two stators is discussed, and we suggest 

future experimental verification.
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INTRODUCTION
Flagellar rotation is one of the major mechanisms for bacterial motility. Using the transmembrane 

electrochemical H+ (or Na+) gradient to power rotation of the flagellar motor, free-swimming bacteria 

can propel their cell body at a speed of 15-100 m/s, or up to 100 cell body lengths per second (1, 2). 

The proton motive force (PMF) is a sum of enthalpic and entropic terms:  

         (1)

In the case of a sodium driven motor, pH is replaced by the sodium ion concentration term

)]/[]([log10 outin NaNapNa  . The Bacterial Flagellar Motor (BFM) consists of a rotary motor 

embedded in the cell envelope connected to an extracellular helical propeller (see Fig.1a) (1, 3, 4). The 

motor is the first natural object proposed and demonstrated to be a rotary machine (5). It is about 45 

nm in diameter and contains about eleven torque-generating units attached to the cell wall around the 

periphery of the rotor (6). The stator is believed to deliver torque to the rotor by converting the free 

energy of inward flow of ions down an electrochemical gradient across the cytoplasmic membrane into 

the cell. 

A schematic plot of the key components of the Escherichia coli bacterial flagellar motor is given in 

Fig.1a, derived from collected research of electron microscopy, sequencing and mutational studies

(reviewed in refs (7, 8)). More recently, crystal structures of some of the rotor proteins have become 

available (7). The basal body comprises a rod connecting four protein rings, the L-ring, P-ring, MS-

ring, and cytoplasmic C-ring (9). Functionally, the basal body is the rotor of the BFM. The rotor 

complex is homologous to the type-III secretion system of Gram negative bacteria (9, 10). Around the 

periphery of the MS-ring, there is a circular array of stator complexes. They comprise the MotA and 

MotB proteins in a 4A2B stoichiometry. The MotA/MotB complex is homologous to the TonB-ExbB-

ExbD and the TolA-TolQ-TolR complexes of outer membrane transport energizers (11, 12). Both 

MotA and MotB span the cytoplasmic membrane. MotB is suggested to anchor MotA to the rigid 

framework of the peptidoglycan through some 7-8 nanometer long -helices (the so-called stator 

springs in the later discussions). MotA has four transmembrane  -helices and a large cytoplasmic

loop. Mutational studies found that several critical charged residues on these cytoplasmic loop interact 
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electrostatically with charged residues on the C-terminus of FliG on the C-ring (13). This interaction is 

important for the torque generation mechanism of the BFM. FliG, FliM, and FliN constitute the C ring 

and are also referred to as the “switch complex”, since mutations in this region often lead to defects in 

switching function. The structure of the Na+ motor is similar to the H+ motor. The MotA/MotB 

complex correspondence is the PomA/PomB complex in the Na+ motor (14). The Na+ and H+ motors 

probably have the same mechanism. This idea is supported by the experimental observation that 

chimeric motors that mix components from both types of motor can still function (15). In the rest of 

this paper we will refer to one particular Na+-driven chimeric motor which uses a Na+ type stator and E.

coli BFM rotor (15). Since it is easier to change the Na+ concentration and sodium-motive force (SMF) 

than the PMF and pH value in the medium without interfering with other cellular processes, this 

chimeric motor has become a favorable target in recent BFM studies (16-18).

To clarify the working mechanism of the flagellar motor, we need to understand the mechanochemical 

cycle of torque generation and how it is coupled to ion flux. In the past three decades, various 

experimental techniques have been implemented in the study of BFM. Before direct step measurement, 

the torque-speed relationship was the major biophysical probe to study the mechanism. By attaching a 

polystyrene bead onto the flagellum, or by applying rotating electric field, Berg and coworkers, 

followed by other researchers, measured how the motor torque (output of the motor) varies with speed 

(16, 18-24). The experiments can be viewed as early experimental efforts of biophysics studies at 

single protein/protein complex levels. It gives a full picture of the motor’s output under external loads, 

and gives an indication of the energy conversion efficiency. The observed motor torque-speed 

relations, which show sharp transitions (the “knee”) between a plateau region at low speed and a steep 

concave-down region at high speed, remained unexplained for a long time (1).

In our previous paper, we constructed a mathematical model to explain the observed motor torque-

speed relationship (25). We showed that the flat plateau and knee are mainly due to the following facts: 

1) rotation is observed through a soft elastic linkage between the motor and the viscous load; 2) the 

diffusion dynamics of the load and the internal kinetics of the motor are on different time scales. Our 

model suggested that motor dynamics in the plateau region and in the concave-down region is 

controlled by thermodynamics and internal motor kinetics, respectively. Consequently, we suggested

that the two components of the ion motive force, the membrane potential and the transmembrane ion 

gradient, are equivalent in controlling motor speed in the plateau region, but may be non-equivalent in 
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the concave-down region. The latest experiment by Lo et al. confirmed that individual components of 

the SMF show non-equivalent influence on the chimera motor function in the low load regime (26). 

Our model also predicted that the motor speed at vanishing load (the zero-load speed) decreases with 

the number of stators. However, recent experiment by Yuan and Berg showed the zero-load speed is 

independent of the stator number (27). They performed numerical simulations with our model, and 

stated that the experimental result can be recovered if the stator springs, neglected in our original work,

are explicitly treated and are sufficiently soft. However, this raises another concern about the model. 

One expects that a motor with soft stator springs does not show clear steps (28). On the other hand, 

Sowa et al. observed clear 26 steps per revolution in a slow rotating chimera motor. In this work, we

examine our model if it is compatible with both the zero-load speed experiment and the stepping 

experiment.  We focus on the dynamics of the flagellar motor. We first improve the modeling of ion 

hopping on/off rates in the model by explicitly considering extracellular/intracellular ion concentration. 

This modification allows separate treatment of the membrane potential and the ion gradient. We 

present results that can fit E. coli and chimera motor data respectively.  Models of the two types of 

motor are derived from the same framework but differ in the values of some parameters (e.g, ion 

hopping rates). Next, we show that the model predicts that the flagellar motor is a stepping motor and 

discuss the corresponding dwelling time distribution. After we introduce a soft stator spring in the 

model, the model reproduces both the stepping behavior and the correct zero-load speed dependence 

on the stator number. We further discuss the stepping behavior when two stators are engaged in the 

system. A series of testable predictions are made, which will become the starting point of a new 

generation of experiments.

MODEL FORMATION AND COMPUTATIONAL DETAILS
With extensive biochemical, Cryo-EM, crystallography, and mutational studies, detailed information 

of the motor has been accumulated. Current biochemical and structural studies imply that the motor 

torque is generated by stator conformational changes upon ion binding/unbinding to the negatively 

charged D32 residue on the MotB helices (D24 on PomB for the Na+ motor). This motion is 

transmitted to the rotor via interactions at the rotor-stator interfaces (see 1, 7, and references therein).

Details of these interactions will remain vague until the atomic structure of the stator has been 

determined; currently the structures of but a few portions of the rotor are available (29-31).
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Our coarse-grained model integrates available information from various experimental observations 

(25). In order to generate sufficient torque, we assume that one torque generation cycle of the stator is 

driven by the free energy derived from transporting two periplasmic protons to the two negatively 

charged D32 residues on the two MotB helices, then to the cytoplasm. On binding and releasing the 

ions, two cytoplasmic MotA loops alternate in contacting successive FliGs on rotor, like two 

alternating “pistons”. The MoA loop motions result in a downward stroke followed by a recovery 

stroke, each of which pushes the rotor to rotate. During the cycle, the stator is always engaged with the 

rotor; i.e. the duty ratio is 1. The binding energy of the protons to MotB is converted into a ‘flashing’ 

electric field in the stator that triggers a pair of conformational transitions (Fig. 1b). The torque thus 

generated is transmitted to the rotor when the MotA loops are in contact with the FliGs. The interaction 

between MotA and FliG is most likely (but not necessarily) dominated by electrostatic and steric 

interactions (13, 25). Detailed modeling of these interactions has to wait for more structural 

information.

The above process can be described mathematically by a set of stochastic equations. The dynamics of 

the single stator motor pulling a viscous load via an elastic linkage can be described by the Langevin 

equation:



Rotor : R

dR

dt
Viscous drag torque

on the rotor

1 2 3
 


R

VRS s,R S 
Rotor-Stator

interaction force

1 24 4 4 34 4 4
 R L 

Elastic coupling
force

1 24 34
 2kBTR f

R
(t)

Brownian torque
on the rotor

1 244 34 4
   (2)

where the angle S , R and L are defined in Figure 1c, and S is set to zero except in simulations that 

consider stator spring explicitly. R is the effective drag coefficient of the rotor. The viscous load (e.g., 

the polystyrene bead) is coupled to the rotor via an elastic linkage, which is modeled by a harmonic 

potential, 2)(2/1 LRRLV   . The last term is the stochastic Brownian force acting on the rotor, 

where ƒR(t) is uncorrelated white noise with normal Gaussian distribution (32, 33). VRS is the potential 

of mean force of the rotor-stator interaction, and s is a binary variable referring to the stator 

conformational state: right or left piston down. The potentials VRS are chosen as identical periodic free 

energy profiles, each offset by a half-period, as shown in Figure 1b. The choices of the potential shapes 

and the exact half-period offset here are for simplicity, and can be improved when more structural and 

dynamic information is available. Our numerical studies have found that our conclusion does not 

depend upon the exact shape of the potentials. The slope of VRS determines the force profile the stator 
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exerts on the rotor. The high peak at the top of each potential ensures tight-coupling between the rotor 

and stator by preventing a thermal fluctuation from carrying the system to the left (backward slipping) 

and ‘wasting’ a pair of translocated protons. The structural correspondence of the barrier needs further 

study. We suggest that steric interactions between FliGs and the cytoplasmic loop of MotA may serve 

the role. In parallel to the motor spatial motion, a stator can switch between the two stator chemical 

states, which correspond to switching between the two potential curves shown in Figure 1b. The 

switching is described by Kramers jump processes between the two potential curves. The Kramers 

rates are directly related to the ion motive force (IMF). In our original model, the effect of IMF was

described by a composite factor. To study the effect of the two components (ion concentration gradient 

and transmembrane potential) separately, in this work we model the jump rates for the exchange of 2 

ions between the periplasm and stator binding sites as: 

kon
peri  f (R S ,1,1)(Cperi )

2 k0 exp(0.5(V1 V2  2 e ) / kBT )                                            (3)

koff
peri  f (R S ,1,1)exp(2 pKa ) k0 exp(0.5(V1 V2  2 e ) / kBT )                               (4)

and those between the cytoplasm and a stator binding sites as,

koff
cyto  f (R S ,2 ,2 )exp(2 pKa )k0 exp(0.5(V2 V1  2(1  )e ) / kBT )                       (5)

kon
cyto  f (R S , 2,2 )(Ccyto )2 k0 exp(0.5(V2 V1  2(1  )e ) / kBT )                             (6)

where the functions V1 and V2 refer to the potentials VRS for the two stator states (empty and occupied, 

respectively), Cperi and Ccyto are the ion concentrations at the periplasmic and cytoplasmic sides, 

respectively,  in units of mM. apK is the intrinsic dissociation constant of the ion binding site along

the stator channel. 0k is a prefactor of the transition rates. The function f (,,) is the transition 

window accounting for the requirement that chemical transitions and the rotor position are coupled

(see ref (25) for details). Here we use a triangle shape
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or a uniform function

f (,,) 
1, for     

0, otherwise






                                                                                                                                  (8)

In each torque generation cycle, two ions from the periplasm jump onto a stator and are later released 

to the cytoplasm. The rotor rotates an average angle of 2/26, and the free energy of the overall 

systems drops 


kBT ln
kon

peri

koff
peri

koff
cyto

kon
cyto









  2e% . Therefore, in the above rate expressions detailed balance 

is automatically satisfied. For simplicity we assume that ion binding is cooperative. Notice that the two 

components of the ion motive force affect the jump rates differently. The ion concentrations affect only 

the on rates. The effect of the membrane potential is more complicated, and may be due either to

increasing local ion concentrations at the membrane surface or affecting the transition dynamics 

directly. Here for simplicity we assume that the on- and off- rates for a particular jump are equally 

affected by the membrane potential. The parameter  specifies the partition of membrane potential for 

the two half steps of the torque generation cycle. We found a  value ~ 0.6 gives the best fit to the 

results of Lo et al (26). This result is consistent with the structural fact that the residue D32 resides 

close to the cytoplasmic end of the membrane, and thus one expects a larger effect of the membrane 

potential on the ion hopping rates from the periplasmic side. 

The next step in our model is to include the load, e.g. the latex bead attached to the flagellum. 

Simultaneously, the motion of the load is described by the Langevin equation:



Load : L

dL

dt
Viscous drag

force on the Load

1 2 3
 R L 

Elastic coupling
force

1 24 34
 2kBTL f

L
(t)

Brownian force
on the load

1 244 34 4
    (9)
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Here the elastic coupling term appears with sign opposite that in Eq. (2), and L is the drag coefficient 

of the load. The last term is the Brownian force on the load. The characteristic time scale for the 

motion of the load is tL = L/.

The model equations (2) and (9) can be replaced by the equivalent coupled Fokker-Planck equations

with 0S , describing the probability density, ),,( tRLj  of the rotor and load being at position 

),( RL  and chemical state j at time t while driven by a single stator:



  j

 t


1
DR


R

1
kBT

 (L R ) 

R

V j







 j









 

1
DL


L

1
kBT

 R L  j








Motion due to the potential
and the load force

1 24 4 4 4 4 4 4 4 4 4 4 4 4 34 4 4 4 4 4 4 4 4 4 4 4 4

 DR

 2 j

R
2  DL

 2 j

 L
2

Brownian motion
1 24 4 4 34 4 4

 k ji  i
i


Chemical
transitions

1 24 34
, j  1,2

         (10)

Here DR and DL are the diffusion constants of the rotor and the bead, respectively, related to the drag 

coefficients by the Einstein relation,  = kBT/D. We solved the steady state of the Fokker-Planck 

equations with the algorithm developed by Xing et al (34). The algorithm discretizes the 

conformational coordinates, and transforms the partial differential equations into a jumping process 

over many discrete states with their normalized populations p (defined as the probability density 

integrated over the discrete regions) described in the form Kp = 0. The composite K matrix contains 

transitions along both the conformational and reaction coordinates (see ref (35) for details). The steady 

state motor rotation rate is obtained by calculating the spatial flux (summing over all the chemical 

states) at one spatial point. We also performed Langevin dynamics simulations with one or two stators 

engaged to obtain single motor trajectories.

More degrees of freedom need to be included if we consider the stator fluctuations. Structural studies 

show that the stators are fixed to the peptidoglycan through elastic linkages (2, 36). In our previous 

study, we neglected the stator fluctuations for mathematical simplicity. Recent experiments by the 

Berg group revealed that stator fluctuations give rise to some new dynamic behaviors in the low-load 

region (27). Their results contradict a prediction of our original model (25). These researchers showed 

that the experimental results can be reproduced if the stator springs are included in our model. In some 

results presented here, we modeled the stator linkages by harmonic springs and allowed the stators to 
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fluctuate around their equilibrium position. Similar to Eq. (2) and Eq. (9), the movement of each stator 

can be described by an additional Langevin equation. 



Stator : Si

dSi

dt
Viscous drag torque

on the stator

1 24 34



Si

VRSi s,R Si 
Rotor-Stator

interaction force

1 24 44 34 4 4
 S Si 0i 

Elastic coupling
force

1 24 34
 2kBTS f

Si
(t)

Brownian torque
on the stator

1 244 34 4
(11)

where Si, 0i, and Si are the position, equilibrium position, and the ion occupation state of the i-th 

stator. When there are N stators functioning in the system, the torque applied to the rotor is a sum of 

the interaction potential induced by each individual stator at different position and with different ion 

binding status. Correspondingly, the rotor-stator interaction term in Eq. (2) becomes:

Rotor-Stator interaction force  

R

( VRSi (si ,R Si )
i1

N

 )                                                                (12)

The complete BFM model with stator springs explicitly treated is solved by the Langevin simulation 

approach. In these simulations, we implemented parallel Monte Carlo processes, to simulate the 

motion of the rotor, stators, and the bead driven by model potentials and to determine the ion hopping 

on/off in each stator. The motor speed is obtained by running a very long time simulation and dividing 

the final displacement by the total simulation time. In our current model, stators interact indirectly with 

each other through working against a common rotor. Langevin simulations are also used to study the 

stepping behavior of the motor. The stepping statistics (e.g. stepsize and dwelling time distribution) are 

collected by a step finder program, which is described in ref.(37). The same program was previously 

used to analyze the BFM stepping data (17).

RESULTS

1) Torque-speed relationship and effects of different energy components
First we reproduce the E. coli BFM torque speed curve with the new jumping rate formulation. Under

normal living conditions, the E. coli BFM functions with intracellular pH 7.6, external pH 7, and 

membrane potential 120 mV. Without modifying the potential profiles, the E. coli BFM torque speed 

curve can be easily reproduced by inputting these realistic values into our new formulation (Fig. 2a). 

Model parameters are given in Table 1.
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The chimera motor uses a Na+ type BFM stator and H+ type BFM rotor. The torque speed relationship 

of the chimera motor has been reported by Inoue et al. (18). It is highly similar to that of the E. coli

BFM except for a higher ‘knee’ speed and zero-load speed. Without changing the driving potential 

profiles, we substitute the experimental values of chimera motor living condition into our model and fit 

the chimera torque speed curve. In Fig. 2b we present two model results, one with the same chemical 

transition window as that of E. coli motor and the other one with a uniform window. Because the 

torque-speed curves can be reproduced (on both E. coli and chimera) with the same model framework, 

there is likely no fundamental distinction in the energy transduction mechanism between E. coli and 

chimera motors. The difference in the detailed shapes of the motor torque-speed relations may reflect 

subtle structural differences. We model the difference by the transition window shape, which reflects 

the coupling between stator ion transduction and the relative positions of rotor and stator. 

Our model gives an explicit answer to the mysterious BFM torque-speed relationship. At high load, the 

bead response time is much longer than the motor internal (ion hopping on/off and rotor motion) 

dynamics. The motor dynamics is near equilibrium under external constraint (from the load). The 

motor torque is determined by thermodynamics (25, 38-40).

LL ≈ G/ =(HTS)/                         (13)

where Lis the angular velocity of the load,  = 2 is the angular step length (i.e. distance between 

FliGs), and G is the free energy drop per stator cycle derived from IMF(PMF or SMF).  However, at 

low load, there is no time scale separation between the bead relaxation and the internal motor 

processes, and the motor dynamics is kinetics-controlled. The observed transition between the plateau 

and knee region is quite sharp. As discussed in our previous paper, this observation can be explained 

through interplay between localized transitions along R and stator mutual interference. To make a 

transition from one potential curve to another one (corresponding to ion hopping on and off within one 

stator), the rotor needs to rotate into the transition window. However, other stators may push the 

rotator to move out of the transition window before the chemical transition takes place. Consequently, 

the rotor is trapped before thermal fluctuations bring it back into the transition window so the stator 

can switch its chemical state. A load reduces occurrence of the trap by pulling the rotor backward. 

Therefore decreasing the load shortens the bead response time, and lengthens the motor internal 

dynamics at the same time. This results in abrupt change of the system from the thermodynamics-
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controlled plateau region (with time-scale separation between the bead response time and the motor 

internal kinetics) to the kinetics-controlled knee region (with no time-scale separation between them). 

A direct prediction of the above discussion is that the two components of the ion motive force, the 

concentration gradient, and the transmembrane potential, are equivalent in the high-load region, but 

may not necessarily be equivalent in the low-load region. Figure 3a shows that the motor speed is 

proportional to the membrane voltage in both directions. This result is consistent with Berg’s 

experiment (22, 23). However, as shown in Figure 3b, the motor speed responds to periplasmic ion 

concentrations asymmetrically, and becomes saturated at high ion concentrations, consistent with 

experimental observations (16).

With our model we can also investigate the effect of varying the relative ion concentration and 

membrane potential contributions while holding the total IMF constant. Figure 3c shows that the 

external ion concentration has much stronger influence on the motor output. The motor speed 

decreases dramatically when external ion concentration is lowered, despite the total IMF being

compensated by a transmembrane voltage increase. Figure 3c compares our simulations with the 

experimental observation of Lo et al.(26). Therefore, our model correctly predicts that the motor speed 

depends more strongly on the external ion concentration than on the membrane voltage. One obvious 

explanation is that the diffusion limited binding of ions is the rate limiting step at low load, but not at 

high load. 

2) Zero-load speeds and the stator springs
Our original model predicted that the motor zero-load speed (i.e., the rotation speed without external 

load) decreases with the number of stators engaged, a remnant of the stator mutual interference effect 

discussed above (25). Recently, Yuan and Berg tested this prediction in a proton-driven motor (27). 

Their observations show that the zero-load speeds with different numbers of stators converge to a 

single value. This result suggests that the mutual interference between stators is not as strong as we 

suggested near the zero-load regime. This can be explained by the fact that MotB in each stator is 

linked to the peptidoglycan through -helices several nanometers long. The linker may introduce 

compliance and allow lateral fluctuation of the stator. In our original model, we neglected such stator 

fluctuations due to the stator springs. Yuan and Berg performed numerical simulations using our 

model, and found a converged zero-load speed can be obtained by introducing soft stator springs. With 

the stator springs, the above mentioned destructive interference among stators at high speed is reduced 
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(see Figure 7c). We performed similar simulations (Fig. 4), and found that a spring stiffness constant ~ 

200 pNnm/rad2 is sufficient to reasonably reproduce the experimental data. The angular spring 

constant corresponds to a translational spring constant 1 pN/nm if we assume the rotor radius is 15 nm. 

This value agrees well with the estimated linker stiffness assuming it is -helix and with the value 

determined by Yuan and Berg (27).

3) The motor is a stepper 
As discussed above, the zero-load speed results require lateral fluctuations of the stators. However, 

existence of soft stator springs can smear the steps in a motor trajectory (28). On the other hand, steps 

have been observed experimentally for the chimera motor. Can our model reproduce both sets of 

experiments? Below we show some model simulation results following experimental conditions and 

the methods used to analyze the experimental data. 

Similar to the experimental procedure, in our simulation we assign Nstator = 1 and lower the external 

sodium concentration. Stepping behavior becomes obvious when the motor speed is lower than 10 Hz. 

In Fig. 5a, we show a series of stepping traces under various external sodium concentrations. Notice 

that in the experimental traces (Fig. 5b) published by Sowa et al., the information of the external 

sodium concentration is lacking. By comparing the experimental traces with our simulation, we can 

make an educated guess of the external sodium concentration of the cells being studied in these 

experiments. For example, the central three traces running at 0.5 ～2 Hz are from an environment with 

approximately 0.5～1.5 mM external sodium concentration. If the external sodium concentration is 

lower than 0.5mM, backwards steps occur frequently and the motor can not make noticeable

advancement. 

It remains to be confirmed if steps can be resolved in wild-type E. coli motors as in chimera motors. 

Next we theoretically explore the conditions under which E. coli motor stepping can be seen. The 

speed of the motor decreases rapidly when the external pH value is increased. However, in real 

experiment the E. coli cells are not able to endure a large pH change since they cannot survive a strong 

alkali environment. Therefore, our aim is to find the least demanding condition under which steps can 

be resolved. Figure 6a shows simulated results with pH external = 8.4 and pH internal = 7.6. Two 
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stator spring constants are used. One is  = 200 pN nm/rad2, the value used above to reproduce the 

zero-load speeds; another is  = 3000 pN nm/rad2. We suggest that the spring constant could be 

stiffened e.g. through antibody binding onto the stator linker or use of a mutant with a shorter and thus 

presumably stiffer linker. The motor runs at about 8 Hz with detectable steps in both cases, although

the trajectory with the softer stator spring is noisier. Figure 6b shows the step-size distribution obtained 

with the step finder algorithm used previously (37). The step-size distribution is centered around 26 

steps / revolution, consistent with the experimental result of Sowa et al (17) for the chimera motor. In 

our model, each motor cycle has two half steps. However, under the experimental conditions simulated 

in Figure 6b only the ion binding from the periplasm is rate-limiting: the second half-step 

corresponding to release of two ions into the cytoplasm follows the first half-step too rapidly to be 

resolved. Our model suggests that clear substeps may be observed if the ion binding sites (D32) have 

higher ion binding affinity than that of the wild type, and thus lower ion off rate.  Figure 6c shows the 

corresponding dwelling time distributions. It can be fitted with single exponential decay. Recent higher 

resolution experimental results show similar results (unpublished data in R. Berry’s lab).

To conclude, our model reproduces the chimera motor stepping, and predicts the conditions under 

which E. coli motor stepping should be observable, and the corresponding statistics. Experimental 

realization of these conditions is on the way.

The motion of a protein motor is continuous for all biological purposes. Why does the continuous 

motion of the motor result in stepping behavior? Stepping behavior has been observed for many 

protein motors (41, 42). Figure 5c schematically shows how the continuous motion of a protein motor 

produces steps. For most of the time, the motor fluctuates around a potential minimum, so one 

observes the motor (or the indicator) to fluctuate around a fixed angular (or spatial) position (labeled 

1). The distribution of the motor position reveals the local structure of the potential well. After a 

chemical transition takes place, the motor slides down a new potential until it reaches the next potential 

minimum. Experimentally one observes fast motion of the motor (labeled 2) followed by fluctuation 

around the new minimum. The relatively fast transient motion and long time dwelling around some 
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positions give the stepping behavior of the motor, and justifies usage of discrete kinetic models on 

modeling protein motors (43). 

Occasionally backward steps can be observed. Two possible transitions can result in backward motion. 

The motor, with the ion binding sites empty or occupied, may simply slip backward over the potential 

barrier (labeled 3). In this case ions are translocated without net motor motion, thus the two motions 

are decoupled. The backward step could also be the inverse of the process described by step 2 (labeled 

4). A motor rests in a state with empty stator binding sites and angular positions that ions are 

accessible to the binding sites from the periplasmic side (the “PE” state in a discrete kinetic model). 

Random thermal fluctuations allow the motor to rotate to the angular locations that the stator binding 

sites are accessible from the cytoplasmic side (the “CE” state). Then the motor picks up a pair of ions 

(the “CO” state), fluctuates back (“CO”  “PO”), and releases ions to the periplasmic side (“PO” 

“PE”). In this case the motor motion and the chemical transition are still tightly coupled. The BFM 

functions as a pump when this type of backward steps takes place. One difference between these two 

mechanisms is that the loose-coupling mechanism produces a full backward step only, but the tight 

coupling mechanism can in principle produce half steps. The backward sub-steps, if exist, may also be 

resolved if a mutant with the stators having high ion binding affinity is used, so the step of releasing 

the binding ions to the periplasm can be slowed down. Decreasing the extracellular ion concentration 

has less effect on the loose-coupling mechanism than on the tight-coupling mechanism. For the latter a 

longer waiting time for the motor to pick up ions from the periplasm increases the probability that the 

motor instead pick up ions from the cytoplasm and a backward step takes place. It is experimentally 

observed that the number of backward steps increases on decreasing the extracellular ion 

concentration. This suggests that the tight-coupling backward mechanism contribute to the observed 

backward steps. However, we cannot rule out the loose-coupling mechanism. We want to point out that 

description of backward motion is automatically included in a potential based continuous model (35).

4) Step size vs. stator number
In this section we discuss the stepping behavior for a motor with multiple stators engaged. Fluctuation 

analysis predicted that the step-size decreases to 1/n of  if there are n stators in the system (44, 45). 

However, recent experiment on the chimera motor reveals ‘the apparent independence of step size on 

stator number’ (17). These two results obviously contradict with each other.

In stator resurrection experiments using the chimeric motor, one decreases the external ion 
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concentration to disengage the stators from the rotor, then waits for the stators to resurrect, i.e., re-

engage one by one in random sequence (17). Therefore the relative distance between the two 

resurrecting stators may be different on different experimental attempts. Because our model potentials 

are 2 /26 periodic, we can project all the stator positions into one period =2 /26. The projection 

allows us to visualize the relative phase of these stator positions. For simplicity, here we only discuss 

Nstator = 2. Taking the first stator as the reference point, the second stator can be bound at any position 

 S [0, ]. Figure 7 gives a qualitative picture of the stepping behavior of a motor with two stators 

based on our model framework. Figure 7 a and b show two cases with stiff stator springs but different 

ratios of the stator distance S over the rotor periodicity  (2/26). If the ratio is not integer, one 

expects doubled step numbers and smaller step sizes reflecting S / compared to the one-stator case. 

If the ratio is integer, around each dwelling configuration (one local minimum of the composite 

potential) the system cannot move forward until both the stators change their chemical states. 

Consequently, the step numbers and size are the same as in the one-stator case, but with longer 

dwelling time on average. With soft stator springs, the spatial mutual coupling between the chemical 

transitions within the stators is reduced (Figure 7c). The above discussed difference with different S

/  may be less clear. Figure 8 shows the step size distributions calculated from simulated traces by the 

step finder with different values of the stator spring stiffness and S / . With stiff stator springs, and 

S /  = 0.5 or 1, the step sizes are indeed centered around 0.5  and , respectively (with longer 

average dwelling time for the latter, results not shown). With soft stator springs, on the other hand, in 

both cases the step sizes show broad distributions centered around . The soft stator spring results may 

explain why the observed step sizes are apparently independent of stator number. The fluctuation

analysis of Samuel and Berg(44) counts the number of statistically independent rate-limiting events, 

which are not necessarily the same as observable mechanical steps. 

DISCUSSIONS AND CONCLUSIONS
Our model is a work in progress, which can be refined in several aspects in response to future 

experimental results:

First, in our original model, the stator effect is partly absorbed in the model parameters (parameter 

renormalization). With explicit treatment of the stator springs, the model needs to be re-parameterized. 

Our numerical studies found that the generic behaviors of the torque-speed curves, i.e, existence of 

plateau and linear ion motive force dependence of the rotation speed at low speed region, and decline 
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of the motor torque at high speed region, are to a large extent insensitive to model parameters (see also 

Figure 4). As explained in the original paper, they are a general consequence of the interplay of several 

times scales in the system. On the other hand, detailed shapes of the torque-speed curves do depend on 

some model parameters. The stator springs greatly expand the degrees of freedom in the model. An

efficient numerical method is needed for fast parameter optimization in the future.

Second, the model discussed in the original paper and in this work is rather generic. Some details 

relevant to the motor function may be missing. Currently we assign all the stator-stator interactions 

through a common rotor. The neighboring stators may interact directly as well as through the rotor. A

similar idea has been proposed for the F1 part of the ATP synthase (46). For the flagellar motor, EM 

images show that the arrangement of stators is crowded (47). A stator under tension distorts the 

membrane as well as the stator springs. The stators may interact with each other through tension-

dependent membrane-mediated interactions (48). This lateral coupling may assure sufficient 

destructive stator mutual interference to produce the sharp transition of the motor torque-speed curves, 

and that the mutual interference drops on decreasing the load to produce the correct zero-load speed 

behavior. 

Third, in our model we enforce the tight coupling assumption by high potential barriers. The 

assumption means that there is a definite coupling between rotor rotation and the number of ions 

transferred: one step (~2/26) of forward rotation of the rotor accompanies transferring two ions from 

the periplasm to the cytoplasm; one step of backward rotation of the rotor accompanies transferring 

ions from the cytoplasm to the periplasm (therefore the BFM acts as a pump). We made this 

assumption because several experimental results are in agreement with the consequences if the motor 

is tightly coupled. However, none of the existing experimental evidence really precludes the possibility 

that the motor is not perfectly coupled (i.e., near 100%). To clarify this problem, we require an 

accurate measurement of the stall torque and the corresponding stepping statistics in single-stator 

motors at both high load and low load. Then, the exact number of ions consumed in a motor step can 

be calculated. Furthermore, if one can measure and control the ion flux through the stator channel, the 

answer to the above ‘coupling’ puzzle will be straightforward. 

In summary, we analyzed the dynamics of our BFM model in detail. The model predicts the observed 

non-equivalence of the two components of the ion motive force at high speed regions. With explicit 

consideration of the stator springs, the model reproduces the observed zero-load speed dependence on 
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stator numbers. The motor can be a stepper even in the presence of stator springs. With two stators 

engaged, however, smaller steps are difficult to resolve. We suggest that if the stator springs can be 

stiffened (e.g., through antibody binding), more insights into the BFM dynamical behaviors can be 

obtained. We also suggest that sub-steps (for both forward and backward steps) may be resolved if one 

uses a mutant with the stator charges having higher affinity for the binding ions than the wild type 

does.
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Table 1

Quantity Value Comments

Potential periodicity,  2/26 Refs. (7, 17)

Rotor drag coefficient, R 2×10-3

pN•nm•s/rad2
Estimated 

Bead diffusion constant, DL
0.01–100 rad2/s Calculated from Stokes’ Law

Stator diffusion constant, Ds 500 rad2/s Estimated

Load-Rotor Linkage spring constant,  400-500 
pN.nm/rad2

Estimated from experimental 
measurements (49)

Saw-tooth potential height, U 10 kBT Ad hoc

Ratio of the two potential branches, 
Lleft/Lright

1/9

Potential bumps Height 15 kBT

Width 0.2

Centers 0.1  (State1)

0.6 (State 2)

Transition windows 1 , 2 0.1  Fitting data

1 , 2 0.58(0.58+0.5)

Binding site pK 
value

H+ motor pKa= 7.3 Estimated (using the middle value 
of external and internal 
concentration)

Chimera motor pKa= 31.6mM

Binding rate pre-
H+ motor 1.0× 1020 s-1 Fit experimental torque-speed 
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factors (two ions) 0k Chimera motor 1.0× 108 s-1 (or 6.0× 
107 s-1       with a 
uniform window)

curve

E.coli BFM living 
condition

pHperiplasm 7.0 Experimental values

pHcytoplasm 7.6

Vmembrane 120mV

Chimera BFM living 
condition

[Na]periplasm 85mM

[Na]cytoplasm 12mM

Vmembrane 140mV

Table 1 Model parameters.
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Figure Captions

Figure 1 Schematic illustration of (a) the flagellar motor structure and (b) the mathematical model. 

There are three essential components in the model to reproduce the observed motor torque-speed 

relations: a) a potential barrier to reduce futile backward slipping after a power stroke and ensure tight 

coupling; b) an elastic linkage between the motor and the bead; c) localized chemical transitions.

(reproduced from ref. (25) with permission) (c) definition of the angular variables LRS  ,, used in 

our simulations. 

Figure 2 The experimental (triangles) and calculated (solid lines) torque-speed curves for (a) the E. coli

H+ and (b) the chimera BFM motors. Normalized torque is used in both figures. In (b) we show two 

model predictions: solid line, the same transition assisting window as used in E. coli fitting; dashed 

line, a uniform transition window. 

Figure 3 Different effects of the two energy components on E. coli motor dynamics: (a) with fixed ion 

concentrations but varying membrane potential; upper inset panel: motor speed vs. membrane voltage 

along a high load (D = 0.15 rad2/s) line; lower inset panel: motor speed vs. membrane voltage along a 

low load (D = 2.1rad2/s) line. (b) with fixed membrane potential but varying external ion 

concentration; upper inset panel: motor speed vs. periplasm pH along a high load (D = 0.15 rad2/s) 

line; lower inset panel: motor speed vs. periplasm pH along a low load (D = 2.1 rad2/s) line. (c) with 

fixed ion motive force but different portion of membrane potential and ion concentration difference; 

inset panel: comparison of motor speed at high load and low load with fixed IMF. Here we show 

results for the H+ motor. Similar results are obtained for the chimera motor.

Figure 4 The zero-load speed of an 8-stator E. coli motor compared to the zero-load speed of 1-stator

motor with different stator spring constant (different lines are obtained with different stator diffusion 

constant) 

Figure 5 Single molecule trajectories of the chimera motor at different external Na+ concentrations. (a) 

Simulations. (b) Experimental data from ref (17). (c) Schematic illustration of the stepping behavior. 

The labels in (a) and (c) are consistent. 1: local fluctuation within a potential well. 2: fast transient 

sliding along a potential after chemical transition. 3: backward slipping which breaks tight coupling. 4:

backward motion with tight coupling between motor motion and chemical transitions. To make easy 



24

connection between the continuous model and other discrete kinetic models (e.g., (50)), we indicated 

the corresponding motor mechanchemical states ‘PE’, ‘PO’, ‘CE’, ‘CO’, where ‘P’ and ‘C’ refer to 

that the ion binding sites are accessible from the periplasm and cytoplasm sides, respectively,  ‘E’ and 

‘O’ mean that the binding sites are empty and occupied, respectively. 

Figure 6 Predicted E. coli BFM stepping behavior for one stator with stator spring constant  = 200 pN 

nm/rad2 (left column) and  = 3000 pN nm/rad2 (right column) by analyzing 10 s long trajectories. 

Same parameters as in Table 1 except for pHperiplasm=8.4 (a) a typical trajectory (the solid lines are 

steps found by the step finding algorithm) ; (b) the stepping size distribution; (c) the stepping dwelling 

time distribution. 

Figure 7 Stepping behaviors with two stators. (a) With stiff stator springs, the motor may generate sub-

steps reflecting the distance between the two stators S relative to the rotor periodicity . If the ratio 

S /  is not integer, smaller substeps may be observed. (b) If the ratio S /  is integer, the stepsize 

is the same as in the case of one stator, but the dwelling time is longer on average. (c) With soft stator 

springs, chemical transition within one stator is not restricted by the other stator.

Figure 8 Predicted E. coli BFM stepsize distributions with two stators by analyzing 2 s long 

trajectories with a step-finding algorithm. (a) two stators offset by 0.5 stator spring  = 3000 pN 

nm/rad2; (b) two stators offset by stator spring  = 3000 pN nm/rad2; (c) two stators offset by 0.5

stator spring  = 200 pN nm/rad2; (d) two stators offset by stator spring  = 200 pN nm/rad2;
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Figures

Figure 1 Bai et al.
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Figure 2 Bai et al.
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Figure 3 Bai et al.
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Figure 4 Bai et al.
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Figure 5 Bai et al.
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Figure 6 Bai et al.
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Figure 7 Bai et al.
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Figure 8 Bai et al.


